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Theory is presented for the wall-jet ring disc electrode (W JR DE )  which predicts the current transient 
at the ring resulting from a potential step at a W J R D E  disc for the case where the ring is potentiostatted 
so as to reverse the reaction which occurs at the disc. The shape of  such transients, in which 
double-layer charging effects are minimal, is revealed to be very sensitive to differences in the diffusion 
coefficient of  the electroactive species which reacts at the disc and that of  the corresponding product.  
Accordingly such measurements are recommended for the study of  complex electrode processes in 
order to separate mass transport  parameters (diffusion coefficients) from homogeneous kinetic 
phenomena.  

1. Introduction 

The quantitative investigation of the mechanism of 
electrode processes through their electrochemical 
behaviour typically includes the experimental examin- 
ation of the influence of mass transport on current- 
voltage characteristics and subsequent comparison 
with theoretical predictions derived from candidate 
mechanistic schemes. For all but the simplest of 
mechanisms several independently variable parameters 
- rate constants and diffusion coefficients - have to 
be specified and this necessarily leads one to question 
the uniqueness of agreement of any preferred complex 
mechanism. Traditionally this problem has been sub- 
stantially reduced by making the approximation, for 
intermediates which are not too structurally dissimilar 
from the starting reagent, that identical diffusion 
coefficients may be assumed for all the mechanistically 
significant species and assigned a value equal to that of 
the initial reagent. However, we have recently shown 
that this approximation may be significantly in error 
and that, for example, the molecule tetrachloro-p- 
benzoquinone and the corresponding anion and 
di-anions have markedly different diffusion coeffi- 
cients in acetonitrile [1]. Accordingly it is necessary to 
identify experimental methodologies which allow the 
sensitive observation of unequal diffusion coefficients 
in addition to displaying high resolving power towards 
different electrode reaction mechanisms. 

It has been established that the wall-jet electrode 
(WJE), where a fluid jet strikes a planar electrode at 
right angles and spreads out radially over that surface 
[2], has high mechanistic resolution under steady-state 
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conditions due to its highly nonuniform primary cur- 
rent distribution as compared to other hydrodynamic 
electrodes [3]. Moreover, the extra information avail- 
able from transient experiments is recognized [4] and 
we have developed a theoretical basis for time-domain 
experiments at the WJE [5]. However such experi- 
ments, conducted with large perturbations as in 
potential step chronamperometry, are inevitably 
blighted by double-layer charging effects which may 
mask the processes of interest or at least complicate 
the analysis of recorded transients. In this paper we 
explore the use of the wall-jet ring disc electrode 
(WJRDE) - in which the wall-jet electrode (disc) is 
surrounded by a concentric annular ring electrode - 
for chronoamperometric experiments in which the 
disc, at hydrodynamic equilibrium, is subjected to a 
double-potential step, typically from a potential at 
which no current flows to one corresponding to the 
transport-limited current for the electrode process of 
interest and then back to the initial potential, whilst 
the ring is potentiostatted throughout so as to induce 
the reverse of the process taking place on the disc. It 
will be shown that the current transient on the ring 
electrode is highly sensitive to inequality of diffusion 
coefficients between reagents and intermediates and, 
since the right has a fixed potential, suffers from mini- 
mal double-layer charging effects. In particular we 
examine the case where the disc reaction A ~ B is 
simply reversed at the ring without any intervening 
homogeneous chemistry. However the extension to 
mechanistically complex processes is straightforward 
and the necessary theory readily deduced from that 
given here and elsewhere [5, 6]. 
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2. Theory 

We consider the following electrode reaction: 

A + e - . ' B  

and assume only A to be present in bulk solution. The 
convective diffusion equation describing the con- 
centrations of A and B in time (t) and space are 

Q[A] _ D o2[A] #[A] #[A] 
0t A ~ Vr Or V~ t?z (1) 

o[B] o2[B] 
# t = ~" B --3--~-z2 - % --~-r - V z O z (2) 

where D A and D~ are the diffusion coefficients of A 
and B, respectively, v, is the radial solution velocity 
(r-direction) and v~ is the velocity in the direction 
normal to the electrode surface (z-direction). Expressions 
for Vr and % under laminar flow are given in [6]. Note 
that in writing Equation 1 radial diffusion has been 
neglected: the basis of this approximation has been 
developed elsewhere [7]. We also assume the presence 
of sufficient supporting electrolyte so that migration 
effects are negligible. 

We consider a double potential step on the disc 
electrode with the ring potentiostatted throughout at 
a value corresponding to the transport controlled 
reconversion of B to A. If  the disc electrode potential 
is stepped, at time t = 0, from a value at which no 
current flows to one which induces the transport limited 
conversion of A to B, and then at time t = tstep the disc 
potential is returned to a value at which B is converted 
back into A, then the relevant boundary conditions to 
the defined double potential step chronoamperometric 
problem may be formulated as: 

t < 0 all space 

[A] = [A]b.lk [B] = 0 (3) 

a l l t  ~> 0 z--* 0% 

[A] , [A]bul k (4) 

tstep >/ t ~> 0 

Z = 0  r <<. R1, 

a[A] 
- z ) .  ( 5 )  [A] = 0 ;D  A t?z = 

z = 0, Rl < r ~< R 2 ,  

O[ A] 
= o = ( 6 )  

Oz 

z = O, R 2 < r <<. R 3 

n O[A] - D  [B] (7) 
[B] = 0;~-A ~-z = B3Z 

t > tstep 

z = 0 ,  r <~ R l ,  

a[A] ,, D] 
[B] = 0 ; D  A #z = - - ~ B ~ z  (8) 

z = 0, R1 < r ~< R2, 

~[A] O[B] 
= 0 = ( 9 )  

0z & 

z = O, R2 <~ r <<. R3, 

O[A] 
- 1 ) .  [B]  0 0 )  [B] = 0: O A ~ z  ~Z 

where [A]bul k is the bulk concentration of A, R~ is the 
radius of the disc and R2 and R3, respectively, the 
inner and outer radii of the ring. 

In order to solve Equations 1 and 2 we approximate 
the derivatives by their finite-difference equivalents. 
The r - z  plane is thus divided up into a two dimen- 
sional grid such that increments in the r direction are 
Ar and in the z direction Az. We use the subscripts k 
and j to denote distances in the radial and normal 
directions: 

(radial distance)k = k A r  (11) 

k = O, 1 , . . . , K , , K t  + 1 . . . .  ,K2 ,  Kz + 1 , . . .  ,K~ 

(12) 

where Ar = RI /K1,  K2 = R2/Ar  and/s = R3/Ar  

(normaI distance)j = j A z  (13) 

j = 0, 1 , 2 , . . . , J  (14) 

where Az = Z [ J  and Z is the length of the grid in the 
z-direction [6]. Then the notation tqj, k(q = a or b) 
indicates the concentration of Q = A or B, normal- 
ized to [A]b,lk (q = [Q]/[A]b,lk), at the point (j, k) at 
the instant tAt  where At is a selected increment of real 
time (say, for example, 0.1 ms). 

The finite difference form of Equation 1 is: 

t+laj, k - 'aj, k = ~.~{'+laj+l, k - 2'+laj, k + '+laj_l,k} 

- 2;' {'+ 'aj,,~ - ' + ' a j ,  k,_,} (15) 
-- 2; '{t+'aj+,,, - - '+ la j ,  k} 

where 

DQAt  (16) 
= ( a z ) 2  

2~." = % ( j  + 1, k ) A t  
At (17) 

v z ( j  + 1, k ) A t  
27z = Az (18) 

and Vr(j,  k)  and % ( j ,  k)  are the solution velocity com- 
ponents at (j, k). Rearrangement of Equation 15 leads 
to the following general equation used as the basis for 
the ensuing (implicit) calculations: 

t lVr  f t + l ~  {aj, k} + -j,k-1} = 
t + l  + (Z~' - 2~z + 2Z~. + 1){ aj, k} (19) 

"~j ) t  aj+l.k~ 

An analogous equation exists for B. The set o f ( J  - 1) 
simultaneous equations implied by Equation 19 can 
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be expressed as a matrix equat ion 

{d} q = [ r ]q{u}  q 

where [T] q is a (J  - 1) x ( J  - 1) matrix; 

4 

4 
. 

a, 

,t]_2 

-dj_  l 

-bl 

a2 

= b j c ,  o 

a j - 2  

0 

Ul 

I.t 2 

X uj 

U j_2 
_ H J - 1  . 

and the matr ix elements are as follows 

for /step ~ t >~ 0 
Q = A  

0 < k < K l  

4A ~_ {taj.k } jr_ ~,;r {t+laj, k,_l} 

j = 1 ,2  . . . .  , J -  2 

j = 1 ,2  . . . .  , J -  2 

Kl  < k < K2 

dj a = {'a,,k} + 2; ~ {t+laa, k, l} 

j = 2 , 3  . . . .  , J -  2 

e~ = 2 4 ~ + 4 7 - 4 7 +  1 

j = 2 , 3 , . . . , J -  2 

b, ~ = ~ , + ~ ? - 2 7 + 1  

K2 < k < K 3 

dj A = {'a,,k} + 2;" {'+'a,k,_l} 

j = 2 , 3  . . . . .  J -  2 

{taj,~} + 4~-' Yt+ta I D~) , 

2 2 ~ + 2 ; ' - 2 ; ~ +  1 

j = 2 , 3  . . . .  , J - 2  

cl 0 

b 2 C 2 0 

0 aj 

b.l_2 c j_2  

as_j bj_l 

djA 

b ~ =  

(20) 

b~' = ~ +  

Q = B  
0 < k < K  I 

4 , =  

d , " =  

~ =  

j = 2 , 3 , . . . , J -  2 

{'bl.k} + 4 (  It+lb 1 DA t ,,k'-t~ + ~ 2~ {'al,,~} 

24~ + g '  -- 27~ + 1 

j = 2 , 3  . . . .  , J  - 2 

b~ = 4 y + 2 ~ ' - ) , ~ z +  1 

Kl < k < K2 

4" = {'b,k} + gr {,+lbjk,_l} 

j = 1 ,2  . . . .  , J -  2 

b? = 2~, + ; , ? -  ~? + 1  

j = 2 , 3 , . . . , J - -  2 

b~ = 22~ + 2]' ~ -  2~ ~ + t 

Kz < k < K 3 

4 ~ = {%} + ~? {'+'bj,~,_~} 

j = 1 , 2  . . . . .  ] -  2 

j = 2 , 3  . . . .  J -  2 

b~ = 4 ~ + 4 7 , - ~ ? + 1  

f o r  t > tstep 

Q = A  

0 < k < K  1 

4 a = {'aj, k} + 2;' {'+'a,,e,_l} 

j = 2 ,3  . . . .  , J -  2 

d~ = {'al,k} + 4~' Yt+ta DB 'b 

j = 2 , 3  . . . .  , J - 2  

b, ~ = 4 ~ + 4 7 - 4 7 + 1  

Kl < k < K: 

K 2 < k < G  
as for t~t.p >/ t I> 0 

as for  t~p /> t ~> 0 

Q = B  
0 < k < K 1  

t ~v, ft+l b 4 ~ = {b~,,}+~, ~ j,~,_,} 

j = 1 ,2  . . . .  , J -  2 

b~ = 2 ) 4 + 2 ; ~ - 4 ; ~ +  1 

j = 2 , 3  . . . . .  J -  2 
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b~ = 22~ + 2 1 ' -  2]" + 1 

KI < k < K2 

K2 < k < K3 

all k 

as for tstep /> t ~> 0 

as for tstep ) t >/ 0 

= , a 2vr I,+l a 2v~ 4A--I { J l ,k} -~ j - I  "1 j l , k ' - l }  -~- ~"y - -  d - 1  

4 : 

j = 1 , 2 , . . . , J -  2 

r : 

j = 1 ,2  . . . .  , J -  2 

The special matrix elements f o r j  = 1 a n d j  = J - 1 
result from consideration of  the finite difference form 
of  the boundary conditions given in Equations 3 to 10. 
The subscript k' in place of k relates to an interpolated 
concentration [5, 6]. 

We have shown previously how to apply the back- 
wards implicit finite difference problem to solve 
Equation 20 and refer the reader to [5 and 6] for 
algebraic and computational detail. Notice that the 
matrix elements for A depend on tbj, k, and vice versa, 
so that an iterative procedure is required [5, 6]. Sol- 
ution for Q = A and B provides the concentration 
profiles of  A and B within the diffusion layer of the 
WJRDE as a function of  time. The current at the disc 
may be evaluated from the following: 

for tstep >/ t >/ 0 
K, k(Ar)2 

t/disc : 2~zDAF Y'~ [A]bulk ' a l ' k  A z  (21) 
k=l  

for l > /step 
Ki k(Ar)2 

t/disc - -  z'gDB F 2 [ a ]bu lk  tbl, k Az (22) 
k=l  

where Fis the Faraday constant. The ring current may 
be analogously computed thus: 
f o r t  ~> 0 

x3 k(Ar)2 
t/ring = - -  27ZDBF Y'~ [A]bulk 'b~,k Az (23) 

k = K 2 

3. Resu l t s  

Using the theory outlined above double potential step 
chronoamperometric transients were computed on 
a (Sun Sparcstation) and convergence examined 
by varying J,/s and At values. For  a typical WJRDE 
of geometry R 1 = 0.1637cm, R2 = 0.1745cm, 
R 3 = 0.1888cm, cell constant kc = 0.9 [7] and jet 
diameter a = 0.0345 cm, for volume flow rates in the 
range 0.1 > Vf/cm3s -~ > 0.01 values of J = 500, 
/s = 2000 and At = 0.01 s were found to give satis- 
factory convergence (to three significant figures) for 
aqueous solution parameters (kinematic viscosity, 
V = 0.0089cm2s - l ,  10 -6 < D/cmZs 1 < 10 5). 

We consider first the transients resulting from step- 
ping the disc potential at time t = 0 between a value 
at which no current flows and one corresponding to 
the transport limited conversion of A to B. We have 
shown elsewhere [5] that, if the current is normalized 
with respect to its steady-state transport limited value, 
/lira, the disc transient is a unique function of the 
following dimensionless time parameter: 

Z A = t (A2DA/R 14/8) (24) 

where A = RI-3/8(9C/SDA)I/3; C = {[5M]3/216vs} 1/4 
and M = k4Vr3/2~3a 2, as shown in Fig. 1. Transients 
computed for different radii 0.1 < R~/cm < 0.5 and 
a range of flow rates and diffusion coefficients (see 
above) were all found to lie on the curve shown. 

Turning next to the ring transients Fig. 2 shows the 
computed behaviour for the step at t = 0 for two 
different electrode geometries, (a) R2 = 0.1745 cm 
and R 3 - -0 .1888cm,  and (b) R2 = 0.2cm and 
R 3 --= 0.23 cm. In both cases R~ was fixed as 0.1637 cm 
and DA = DB = 10 Scm2s-~. The absolute mag- 
nitude of the steady-state ring currents were in quan- 
titative agreement with that prediced by the analytical 
'collection efficiency' theory of  Albery [7]. In Fig. 2 the 
ring current has been normalized with respect to its 
steady-state limiting value. It can be seen that, as 
expected, with a larger 'gap' (i.e. R2 - R1) the lag- 
time before the ring current begins to rise is bigger; 
also the wider the ring electrode ( R  3 - -  R 2 )  the longer 
the timescale of the ring transient. 

Figure 3 shows the ring transient resulting from a 
double potential step on the disc of  the typical 
WJRDE defined in the first paragraph of this section 
with "CA, step = 2.5 (corresponding t o  tstep ) and 
D A  ----_ O8 = 10-Scm2s 1. Under these conditions the 
ring current has reached its steady-state value before 
the disc potential is reversed at tstep. The timescales of 
the current rise and fall are comparable. An analogous 
disc transient is shown in Fig. 4.Figure 5 shows plots 
corresponding to Figs 3 and 4 except that n o w  D A = 

1.0- 

0 .8 -  

E .B 
-- 0.6 

0.4 

0.2 

0,0 
o.o dos o'.1 o'.ls o'.2 o as 

~ A  

Fig. 1. The disc transient response to the potential step at t = 0. 
Note that the abscissa is normalized time (~A) and the current is 
normalized to the steady-state transport limited value so that this 
curve is entirely general. 
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1.0. 

E 0.8-  

~ 0 , 6 -  

0,4- 

0,2. 

0.0. 

~ , R3=0.1888 cm 

~ .23 cm 

0,0 0.4 0.8 1.2 1.6 2.0 2.4 

TA 

Fig. 2. The ring transient response to a potential step on the disc at 
t = 0 for two WJRDEs of different geometry as specified in the 
text, 

6.32 x 10 -6 and DB = 7.63 x 1 0 - 6 c m 2 s  -1 and the 
ring current is normalized with respect to its peak 
value. The diffusion coefficient parameters relate to 
the oxidation of ferrocyanide to ferricyanide ions (in 
aqueous solution) at the disc electrode [8]. It can be 
seen that whilst both disc and ring responses are sensi- 
tive to the difference in diffusion coefficients the ring 
reveals the inequality of diffusion coefficients much 
more dramatically and a noticeably asymmetric tran- 
sient results. Moreover, unlike the disc current, double 
layer charging effects are minimal at the ring, since 
this electrode is maintained at a constant potential 
throughout the experiment. The shape of the ring 
transient can be understood when it is recognised that 
the amount of material reaching that electrode is con- 
trolled both by the diffusion coefficient of B, the 
species transported between the disc and the ring, and 
the current passed at the disc which controls the quan- 
tity of B 'sent' to the ring. Immediately following the 
step at t = 0 the ring responses is initially influenced 
by the first of these factors and reflects the magnitude 
o fD  B since then there is only negligible depletion of A 
near the disc. Subsequently, but before /step, the disc 
current has falled, A has been depleted in the vicinity 

3.0 

2.0 

\ (3 

"(3 1.0 

0 
cO 

~'m 0.0, 

-1.0 
o:0 o14 0:; 1'.2 1.6 2:0 -2~ 

TA 
Fig. 4. The disc current response to a double potential step charac- 
terized by steps at v a = 0 and 1.5, The electrode geometry and 
other parameters are specified in the text. 

of the disc, and the disc current limited by the amount 
of A reaching the disc and so the ring current also 
depends on DA. On this basis it is predicted that if the 
diffusion coefficients of A and B are interchanged so 
that D B = 6.32 x 10 -6 and D A = 7.63 x 10-6cm2s -I 
the asymmetry of the transient should be reversed; this 
is shown in Fig. 6. 

3.0 

E 2.0 

d 
(n 

- 0  
1.0 

09 

" ,  0.0 

(a) 

-1.0 ~ -  .-r- 
o.o o;4 o'.~ 1~2 1.8 2.0 2.4 

~A 

1.0, 

Q. 0.8, 

.EC) ~ 0.6"  

-c-- 
~ 0.4 

�9 c- 0.2, 

0.0 
0.0 1.0 2.0 3.0 ~.0 

~A 
Fig. 3. The ring transient response to a double potential step on the 
disc defined by steps at z A = 0 and VA,step = 2.5. The electrode 
geometry and other parameters are specified in the text. 

1.0 

x,, 
CO 0 3  
Q.  

.~ 0.6 

~0.4- 
~  

0.2 ,  

0.0 
o.o o14 o'.8 r ~.6 2.0 2:4 

%A 

Fig. 5. The disc (A) and ring (B) current responses to a double 
potential step characterized by ~A, step = 1.5 for the case where 
D A = 6.32 x 10 -6 a n d D  B = 7.63 x 10 6cm2s-~, 
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Fig. 6. The ring current response to a double potential step for the 
case w h e r e D  B = 6.32 x 10 ̀ 6 a n d D  g = 7.63 x 10-6creEs -1. 
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Fig. 7. The ring current response to a double potential step for the 
case where D B = 3.0 • 10 -6 and D A = 9.0 • 10-6cm2s -1. 

It can be seen that differences in diffusion coeffcient 
between A and B are strikingly revealed by ring tran- 
sients in double potential step chronamperometric 
experiments. Figure 7 shows an extreme case where 
DA = 3.0 x 10 -6 and DB = 9.0 x 1 0 - 6 c m 2 s  -1 to 
emphasise the sensitivity of the approach; nevertheless 
it should be apparent from Figs 5 and 6 that even 
differences between DA and DB can be resolved. 
Accordingly, and in resolution of the problems posed 
in the introduction, we recommend the use of double 
electrode transient measurements for the study of 
those electrode processes in which different participat- 
ing species display dissimilar diffusion coefficients. 
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