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Abstract 

A theory is presented which describes the transient current response to a potential step at a wall-jet 
electrode, thus defining the “response time” of the electrode. Results are given in the form of a 
normalized transient as a function of a dimensionless time parameter which permits the analysis of 
experimental data for electrodes of any geometry and for any solution flow rate. 

INTRODUCTION 

The wall-jet electrode (WJE) is a well-characterized hydrodynamic electrode in 
which the flow is due to a (submerged) fluid jet which strikes a planar electrode at 
right-angles and spreads out radially over that surface; the fluid outside the jet is at 
rest [l]. The mass transport experienced by the electrode depends on its size 
relative to the impinging jet. The term “wall-jet electrode” is understood by the 
electrochemical community to imply the case where the electrode is substantially 
larger than the jet [l-6], whereas the other extreme, in which the relatively tiny 
electrode is within a stagnant flow region, constitutes a “wall-tube electrode” 171. 
The term “impinging jet” has appeared occasionally in engineering parlance 
usually, but not always 181, as a substitute expression for “wall-tube” [9,10]. This 
paper is concerned with the wall-jet electrode as electrochemically defined, and 
the mass transport characteristics of this system are outlined below [l-6]. The 
extent to which practical electrodes may approximate these characteristics is, of 
course, a matter for experimental investigation and this point will be discussed at 
the end of this paper. 
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WJEs are finding increasing use in analysis (e.g. ref. 111, primarily because of 
the advantages of on-line detection and fast sample throughput. Moreover, in the 
context of the mechanistic investigation of electrode processes the wall-jet geome- 
try has been shown to possess considerable advantages most notably because of its 
highly non-uniform primary current distribution [12]. Further merits arise first 
from the flow-through nature of the device which means that fresh concentrations 
of reagents are supplied, and products swept to waste, so that build-up of 
intermediates and products of the electrode reaction which might alter the course 
of the electrode process is prevented, and second from the high sensitivity of the 
WJE (compared with, say, the rotating-disc electrode) to variations in the rate of 
mass transport. 

In this paper we consider the current transient resulting from a potential step at 
the WJE at hydrodynamic equilibrium under laminar flow conditions. The problem 
is of interest since it defines the “response time” of the electrode and, addition- 
ally, such measurements can be used to determine diffusion coefficients (in- 
dependently, if necessary, of knowledge of the concentration of the electroactive 
species or of the number of electrons transferred in the heterogeneous redox 
process). Moreover, current transient measurements can be used advantageously in 
mechanistic work, for example where adsorption or film formation interferes with 
the interpretation of steady-state limiting currents. We are unaware of any previ- 
ously reported theory, other than empirical, for time-dependent processes at 
WJEs. 

THEORY 

We consider the following electrode reaction: 

A&e--B 

and assume only A to be present in bulk solution. The convective diffusion 
equation describing the concentration of A in time t and space is 

G4 =Da2M aPI aPI 
at 

---Y---v- 
az* r ar 2 a2 (1) 

where D is the diffusion coefficient of A, v, is the radial solution velocity (r 
direction) and vz is the velocity in the direction normal to the electrode surface (z 
direction). Expressions for v, and vr under laminar flow are given in ref. 12. It 
should be noted that in writing eqn. (1) radial diffusion has been neglected; the 
basis of this approximation has been developed elsewhere 1131. We also assume the 
presence of sufficient supporting electrolyte to ensure that migration effects are 
negligible. 

If the electrode potential is stepped from a value at which no current flows to 
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one corresponding to the transport-limited conversion of A to B then the relevant 
boundary conditions to the defined problem can be formulated as 

t<Q all space [A] = [Ali,u,k (2) 
t20 z=O, r<R, [A]=0 (3) 
t20 z + 03, [Al + L%k (4) 

where [Albulk is the bulk concentration of A and R is the radius of the electrode. 
In order to solve eqn. (1) we approximate the derivatives by their finite-dif- 

ference equivalents. The r-z plane is thus divided up into a two-dimensional grid 
such that increments in the r direction are Ar and in the z direction AZ. We use 
the subscripts k and j to denote distances in the radial and normal directions: 

(radial distance)k = kAr (5) 

k=O, 1,2 ,..., K where Ar = R/K (6) 

(normal distance) j = jA z (7) 

j=O, 1,2 ,...,J where Az=Z/J (8) 

and Z is the length of the grid in the z direction [12]. Then the notation ‘ajk 
indicates the concentration of A at the point (j, k) at the instant tAt where At is 
a selected increment of real time (say, for example, 0.1 ms). 

The finite-difference form of eqn. (1) is 

where 

DAt 
(10) 

(11) 

A~* = s(j + 1, Wt 
J AZ (12) 

and v,(j, k) and v,(j, k) are the solution velocity components at (j, k). Re- 
arrangement of eqn. (9) leads to the following general equation used as the basis 
for the ensuing (implicit) calculations: 

{fuj,k) +A~{‘+laj,,_,} 

= -hy{‘+laj_l,k } + (Ay-Ay+2AY+ l)(f+laj,k) - (hY-A~){~+lllj+l,k} (13) 
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Application of boundary condition (3) leads to 

(14) 
and condition (4) leads to 

{kl,kj +A”j_l(‘+l%,k-l) 

= -AY{f+1uJ_2,k} +(A~_1-A~_I+2Ay+1)(~+1u~-i,k}-(AY-A~-1) (15) 

These (J - 1) x (J - 1) simultaneous equations can be expressed as a (J - 1) X 
(J - 1) matrix equation 

Id) = m4 
where 

d1 

d, 

dj = 

d.l-* 

d,- 1 

h, Cl 0 

a2 b2 c2 0 
. . . 

. . . 

0 uj bj cj 
. . 

The matrix elements are given by 

dj= {'Uj,k} + A~{ftlUi,k_l} 

0 

u,_~ b,-2 cJ-2 

0 UJ-1 bJ-, 

_ 
Ul 

u2 

‘i 

‘J-2 

uJ- 1 _ 

(16) 

(17) 

(18) 

(19) 
(20) 

(21) 
Equation (16) is analogous to that arising in the procedure we have previously 

described [12] for the solution of steady-state problems at the WJE, and we have 
adopted the same notation here as in that paper. The method of solution below 
follows the general strategy developed in ref. 12. A brief summary is given in the 
next paragraph. 

It should be noted that the matrix equation (eqn. 16) shows how the concentra- 
tions throughout the cell at time (t + l)At can be calculated if we know those at 
time tAt. To do this we have to find the set of vectors Iu): each k value has its own 
vector (u&. Since the matrix [T] is of tridiagonal form, we can use the Thomas 
algorithm [12,141 to give (u}, from {djk. Boundary condition (2) supplies the vector 



{d}, from which {u},, is calculated. Then {&+i = {u},, so {u}i is calculated from 
{d},, and so on until I& is obtained. The calculation is then repeated. It should 
be noted that an expanding grid - which increases in size in proportion to the 
diffusion layer thickness - is used because the electrode is very non-uniformly 
accessible so as to give accurate results. The protocol for the implementation of 
this is exactly as in the solution of steady-state WJE problems [12]. 

In this way the concentration profile of A within the WJE can be calculated as a 
function of time. The current at the electrode can thus be evaluated at any instant 
from 

k( Ar)* 
‘I = 27r@7 5 [Alo *al,k 7 

k=l 
(22) 

RESULTS AND DISCUSSION 

Using the theory outlined above, single-step chronoamperometric transients 
were computed (on a Sun Sparkstation), and the convergence was examined by 
varying .Z, K and At values. For a typical electrode of geometry of radius R = 0.4 
cm, cell constant k, = 0.9 and jet diameter a = 0.0345 cm with volume solution 
flow rates in the range 0.1 > V/cm3 s-l > 0.01, values of J = 500, K = 2000 and 
At = 0.01 were found to give satisfactory convergence (to four significant figures) 
for typical aqueous solution parameters (kinematic viscosity v = 0.0089 cm* s- ‘; 
5 X 10m6 <D/cm* s-i < 5 X lo-?. 

We return to eqn. (1) and note that, with the explicit equations for vr and V, 
given in ref. 12, the definition of the dimensionless variables 

c= (r/R)9’8 (23) 
,y = Az/r7j8 (24) 
r = t ( A2D/R1418) (25) 

where A = R-3/8(9C/8D)‘/3, C = [(5M>3/216u5]1/4 and A4 = kzV:/2r3a2, leads 
to the following normalized equation: 

5 
14,9 aPI a*[4 w -=-- - 

a7 ax* ’ 36 
(26) 

On considering eqn. (26) together with the boundary conditions (2), (3) and (4) it is 
easily shown that the current transient, when normalized to the steady-state 
limiting current ZLIM, should be a unique function of the parameter 7. Accord- 
ingly, current transients were computed for different values of D and R. The 
results are shown in Figs. 1 and 2. It can be seen that in both cases, except at very 
short times (where effects due to the finite size of At are apparent), the computed 
transients all lie on the same curve when T is used as the time variable. These 
observations vindicate the computations carried out and the general strategy 
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Fig. 1. A plot of the transient current response (normalized to the steady-state limiting current) 
calculated for electrodes of radii 0.1,0.2,0.3,0.4 and 0.5 cm. The other (fried) parameters used were 
V, = 0.01 cm3 s-l, a = 0.0345 cm, k, = 0.9 and D = 1 X lo-’ cm* s-l. The results for the five different 
radii all lie on the curve shown. 

proposed. The curves presented in Figs. 1 and 2 define “working curves” which 
can be used as the basis for the analysis of experimental data. In particular, as 
indicated in the Introduction, the measurement of normalized transients allows the 
measurement of diffusion coefficients independent of the knowledge of the con- 
centration of the diffusing species since the latter does not appear in the definition 
of 7. 

Finally we return to the question as to the extent to which the above theory may 
apply to real electrodes. In practice the realization of true “wall-jet” hydrodynam- 
ics requires careful cell design, particularly in relation to the nozzle-electrode 
separation and other parameters [2-6,8,15]. Nevertheless, numerous viable cells 
have been constructed (e.g. refs. 2-6) and shown to agree very satisfactorily with 
theory (usually for the steady-state mass-transport-limited current) based on the 
hydrodynamics (equations for V~ and v,) assumed above. However, it is important 
to realize that, since the results of our calculations are presented through Figs. 1 
and 2 in terms of normalized time, those working curves will apply to any wall-jet 
cell with the correct hydrodynamics and not simply to the electrode geometries 
used in our calculations. Indeed, given this approach, it is not even necessary for 
wall-jet behaviour to be experimentally realizable for the geometries used to 
generate working curves which are applicable to authentic wall-jet cells! 
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Fig. 2. A plot of the transient current response (normalized to the steady-state limiting current) 
calculated for varying diffusion coefficients: lo- ‘s, 5 X 10e6 and 10m5 cm2 s-l. The other (fixed) 
parameters used were Vr = 0.01 cm3 s-l, a = 0.0345 cm, k, = 0.9 and R = 0.4 cm. 

CONCLUSIONS 

The form of the chronoamperometric response to a potential step at a wall-jet 
electrode has been derived and the influence of electrode geometry and solution 
flow rate identified. 
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